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Abstract  

Background 

Automated extraction of bibliographic data, such as article titles, author names, 

abstracts, and references is essential to the affordable creation of large citation 

databases. References, typically appearing at the end of journal articles, can also provide 

valuable information for extracting other bibliographic data. Therefore, parsing 

individual reference to extract author, title, journal, year, etc. is sometimes a necessary 

preprocessing step in building citation-indexing systems. The regular structure in 

references enables us to consider reference parsing a sequence learning problem and to 

study structural Support Vector Machine (SVM), a newly developed structured learning 

algorithm on parsing references. 

Results 

In this study, we implemented structural SVM and used two types of contextual features 

to compare structural SVM with conventional SVM. Both methods achieve above 98% 

token classification accuracy and above 95% overall chunk-level accuracy for reference 

parsing. We also compared SVM and structural SVM to Conditional Random Field 

(CRF).  The experimental results show that structural SVM and CRF achieve similar 

accuracies at token- and chunk-levels.  

Conclusions 

When only basic observation features are used for each token, structural SVM achieves 

higher performance compared to SVM since it utilizes the contextual label features. 

However, when the contextual observation features from neighboring tokens are 

combined, SVM performance improves greatly, and is close to that of structural SVM 

after adding the second order contextual observation features. The comparison of these 

two methods with CRF using the same set of binary features show that both structural 



SVM and CRF perform better than SVM, indicating their stronger sequence learning 

ability in reference parsing. 

Background  
Bibliographic references, typically cited at the end of scientific articles, provide much 

valuable information. Parsing these references is an essential step for building citation-

indexing systems. Many well-known citation-indexing systems, such as CiteSeer [1], ISI 

Web of Knowledge [2] and Google Scholar [3], could have implemented complex 

reference parsing algorithms, though detailed reports about their algorithms and 

performance have not been found in the literature. As the authors of CiteSeer mention in 

[4], the reliable parsing of references may still be considered an open problem. 

MEDLINE
®

, the flagship database of the U.S. National Library of Medicine, contains 

over 18 million citations to the medical journal literature and is a critical source of 

information for biomedical research and clinical medicine. With the rapid increase of 

journal literature indexed by MEDLINE every year, it is essential to have automated 

methods to extract bibliographic data, including article titles, author names, affiliations, 

abstracts, and many others. 

While references are not included in MEDLINE citations, they are indispensable for 

detecting several other items. For example, creating the Comment-On/Comment-In field 

for MEDLINE (identifying pairs of articles, with one article commenting on the other) 

requires matching references to the citing text [5]. In addition, assigning Medical 

Subject Heading (MeSH) terms [6], an essential step in indexing the article, may also 

benefit from analyzing the MeSH terms assigned to the cited articles, which requires 

parsing the references to those articles. Reliable reference parsing is therefore an 

important step for automatically creating citations for MEDLINE. 



In this work, our goal is to extract the following 7 entities from the references: Citation 

Number (<N>), Author Names (<A>), Article Title (<T>), Journal Title (<J>), Volume 

(<V>), Pagination (<P>) and Publication Year (<Y>). All remaining words in the 

reference are labeled as Other (<O>). The notation inside each parenthesis is the 

abbreviated entity label. 

In the large number of journals (over 5,200) indexed for MEDLINE, references are 

formatted in a large variety of ways, some of which are shown in Table 1. In each 

example, the original reference is followed by the ground-truth labeling. Most of the 

references cite “normal” journal articles, but a small number cite books, e.g., (f) and 

international standards, e.g., (g). Some references omit Citation Numbers, e.g., (c), and 

among others which do have these, there are different formats either as a single number 

or an author-year chunk, e.g., (a) and (b). There is also some variation in the way Author 

Names are expressed: initials followed by last names, e.g. (a); last name followed by 

initials, e.g., (d); not all authors listed, e.g., (e); the first author and the remaining 

authors in different formats, e.g., (c); and occasionally an anonymous author, e.g., (g). 

Most Journal Titles are significantly abbreviated, and most Pagination consists only of 

digits, but (d) is an example where Pagination contains non-digit characters. There are 

also many variations in the use of commas, spaces, semicolons or periods to separate 

different entities; and in character capitalizations. This wide variability makes reliable 

reference parsing a challenging task. 

Early research in reference parsing involved rule-based methods, which usually depend 

on knowledge that is manually crafted and based on a domain expert’s observation. This 

domain knowledge is organized as templates or hierarchical frameworks, which 

summarize the recognizable patterns formed by the data or the surrounding text, and the 

rules associated with those recognizable patterns. After the knowledge representation is 



built, various algorithms can be used to match the text to the knowledge representation, 

and to extract data according to the rules. These matching algorithms include template 

mining [7, 8], INFOMAP [9, 10] and BLAST (Basic Local Alignment Search Tool), a 

tool originally designed for gene sequence alignment [11]. 

Rule-based methods can be very successful when the references are from a small or 

moderate number of journals. This is because journal publishers usually require authors 

to strictly follow predefined citation styles, conduct careful editorial checking and 

correction before publishing. However, when a large number of journals are involved, it 

can be very challenging to build a sound knowledge representation due to the large 

variety of, and sometimes conflicting, citation styles. Rule-based methods also require 

domain experts to design the rules and maintain them over time, and therefore lack 

adaptability and are difficult to tune. 

Machine learning approaches have recently attracted increased attention because they 

automatically learn the knowledge from training samples and therefore exhibit good 

adaptability. For example, Parmentier and Belaïd have developed a concept network to 

hierarchically represent and recognize structured data from bibliographic citations [12]. 

Besagni et al. took a bottom-up approach based on Part-of-Speech (PoS) tagging [13]. 

Basic tags, which are easily recognized, are first grouped into homogeneous classes. 

Confusing tokens are then classified by either a set of PoS correction rules or a structure 

model generated from well-detected tokens. 

Reference parsing is essentially a sequence processing task and therefore statistical 

sequence models, e.g., Hidden Markov Model (HMM) and Conditional Random Field 

(CRF), as successful machine learning tools for information retrieval, have also been 

studied for parsing references. For example, Takasu applied HMM for metadata 

extraction from erroneous references [14]. Another frequently adopted machine learning 



method for information extraction is the Support Vector Machine (SVM) classifier. 

Okada et al. combined SVM and HMM for bibliographic component extraction [15]. In 

our previous research, we developed and compared a SVM-based method with one 

based on CRF [16]. 

Since collecting ground-truth training samples can be labor-intensive, unsupervised 

approaches have also been proposed. For example, Cortze et al. proposed an 

unsupervised approach, called FLUX-CiM, which is based on a frequency-tuned lexicon 

and includes four stages: blocking, matching, binding and joining [17]. 

There are also a few reference parsing libraries available online. These include ParsCit 

[18] and FreeCite [19]. 

As pointed out in a recent article, despite over a decade of research, reference parsing is 

still an unsolved task for several reasons, including data-entry errors, the wide variability 

of citation formats, lack of (or enforcement of) standards, large-scale citation data, and 

so on [4]. 

In this paper, we describe an extension of our previous work on reference parsing, 

reported in [16]. We adopted the recently proposed structural SVM method and 

compared it to conventional SVM. Our experiments on 1800 ground-truth labeled 

references show that the structural SVM method achieves over 98% token-level 

accuracy and over 95% chunk-level accuracy. In addition, we compared SVM and 

structural SVM to Conditional Random Field (CRF), another state-of-the-art sequence 

learning method. We observe that structural SVM and CRF achieve about the same 

accuracies at token- and chunk-levels. Both methods show the advantage of stronger 

sequence learning ability over SVM. 



Methods 

Mathematical description of structural SVM 

Structural Support Vector Machine (Structural SVM), introduced by Tsochantaridis et 

al., is a supervised learning method designed for predicting complex structured outputs, 

such as sequences, trees and graphs [20]. Given a training sample of input-output pairs 

    YXyxyx nn ,,, 11  drawn from an unknown distribution, structural SVM 

addresses the general problem of learning a mapping YXf : from input patterns 

Xx to discrete outputs Yy that has low prediction errors. The idea is to learn a 

discriminant function F  from which we can derive a prediction by maximizing F over Y 

given a specific input x :   ),,(maxarg; wyxFwxf
Yy

 .    yxwwyxF T ,,,   is a linear 

combination of some joint feature representations of inputs and outputs, where w is a 

parameter vector and  is a feature vector relating  x and y. The flexibility in designing 

  allows structural SVM to model many problems as diverse as natural language 

parsing, multiclass classification, sequence learning, etc. 

Training the parameter vector w in structural SVM generalizes the maximum-margin 

principle in traditional SVM, leading to a quadratic optimization problem similar to 

multi-class SVM [20, 21]. 
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The constraints are built upon the condition that given a training sample ),( ii yx , the 

value of  ii

T yxw ,  for the correct prediction iy  should be greater than those for all 

other incorrect predictions y . Each training sample is associated with 1y constraints 

which share the same slack variable i . The introduction of i  allows structural SVM to 



learn a large soft margin with small misclassification errors, which makes structural 

SVM more general to solve those classification problems where different classes are not 

strictly separable even in high feature space. The objective function is penalized by 

adding non-zero slack variables, i  , each of which measures the degree of 

misclassification of a sample xi. Therefore, the optimization becomes a trade-off 

between a large margin and a small error penalty.  i  gives an upper bound for the 

empirical risk on the training set, and the constant C is a regularization term that controls 

the trade-off between training error minimization and margin maximization. Training 

structural SVM is computationally expensive due to the large number of margin 

constraints. By an equivalent 1-slack reformulation of the n-slack structural SVM, 

Joachims et al. proposed a “l-slack cutting-plane” method which significantly reduces 

the computation time, thereby making the training on large databases feasible [21]. 

Both SVM and structural SVM are discriminative models. They learn optimal linear-

separable hyperplanes with maximum-margin between classes. Structural SVM 

conducts global optimization on the whole structure, while SVM optimizes locally on 

individual tokens. Structural SVM is more general than SVM in its capability of learning 

interdependent and structured outputs. It has shown promising results for building highly 

complex, but still accurate discriminative models in the areas of classification with 

taxonomies, protein sequence alignment, and natural language context-free grammar 

parsing. 

Feature extraction 

A reference is first preprocessed and segmented into individual word tokens based on 

spaces and punctuations such as commas, periods, semi-colons, brackets, etc. We then 

extract 14 binary features and one normalized position feature from each token. They are 

briefly explained in Table 2. The first three are dictionary features which are collected 



by looking up a candidate word in Author Name, Article Title, and Journal Title 

dictionaries. We built these dictionaries from 10 years of MEDLINE data that contains 

about 236,748 Author Name words, 108,484 Article Title words, and 6,909 Journal Title 

words. The remaining 12 features provide further important information to help identify 

different entities. 

Features from neighboring tokens are very informative as they exploit the contextual 

dependencies between tokens.  There are two kinds of contextual features: the 

observation features extracted from the neighboring tokens and the labels assigned to 

those tokens. We call the first one “contextual observation features” and the second 

“contextual label features”. Since in reference parsing, structural SVM is implemented 

as a sequence learning algorithm, the joint feature presentation function  yx,  

includes two kinds of features: state transition features and observation features 

extracted from individual tokens within a sequence. State transition features utilize 

contextual label information to model the dependencies between adjacent labels. Having 

these similar types of feature representations as Hidden Markov Models, structural SVM 

designed specifically for sequence labeling is sometimes called SVM
HMM

. In addition to 

contextual label features, we also combine contextual observation features from 

neighboring tokens for sequence classification. 

Results and discussion 
We randomly selected 600 references for training and 1800 references for testing from 

1000 HTML articles collected from the top 100 journals cited in the MEDLINE 2006 

database. We manually labeled these 2400 references. There are 18003 words in the 

training references and 53622 words in the testing references. Each entity in reference 

parsing is a single word, also called a token. The algorithm performance is evaluated at 

two levels. One is at token-level, i.e., the accuracy of labeling individual tokens. The 



other is at chunk-level, i.e., the percentage of the entity chunks correctly identified, 

where an entity chunk is the set of consecutive words having the same entity label. For 

example, in Table 1 (e), the Number chunk is a single word “12” and the Author chunk 

is “T.J. McCarthy et al.” consisting of four words. The total number of words and 

chunks for each of the 8 entities in testing references are shown in Table 3. The number 

of words for Citation Number (742) is larger than the number of chunks (627) is due to 

the existence of author-year style Citation Numbers, which have more than one word. 

Evaluation of structural SVM 

For our experiments, we use the SVM
HMM

 library, an implementation of structural SVM 

for sequence labeling [22], and the linear-kernel since other kernels, e.g. radial basic 

function (RBF), can be extremely computation intensive. To compare this with SVM, 

we use LibSVM [23], a library developed at National Taiwan University for word 

classification. Here linear kernel function is also adopted to facilitate a fair comparison.  

All the meta-parameters in both SVM and structural SVM are determined with cross-

validation on training samples. 

We extract 15 observation features including 14 binary features and one normalized 

position feature from each token. For both SVM and structural SVM, we use 3 sets of 

features: observation features from the token itself (15 features), observation features 

from the token and its two neighbors (45 features), and observation features from the 

token and its four neighbors (75 features). We call the observation features extracted 

from the neighboring tokens contextual observation features. Specifically, observation 

features from the immediate left and right neighbors are named as the first order 

contextual observation features; observation features from the left two and right two 

neighbors are referred to the second order contextual observation features, and so on. In 

structural SVM, contextual labels from neighboring tokens are also utilized to explore 



the dependencies between adjacent tokens. Tables 4, 5, and 6 show the overall token 

classification accuracies and chunk-level accuracies obtained by SVM and structural 

SVM for the extraction of 8 entities from the references. 

We first use only the 15 observation features from the token itself. Since SVM does not 

use contextual features, it provides a baseline performance by analyzing only the token 

itself. As expected, the performance is relatively low: the token classification accuracy is 

93.03% and the overall chunk accuracy is only 79.12%. Although structural SVM does 

not use contextual observation features, it does use the contextual label features. The 

overall accuracies at token-level and chunk-level are 98.41% and 95.35%, respectively, 

which are much better than those of the SVM method. This clearly indicates the value of 

contextual label features in structural SVM. 

We then add the observation features from the immediate left and right neighbors (the 

first order contextual observation features). The corresponding token classification 

accuracy and overall chunk-level accuracy of SVM significantly increase to 98.20% and 

94.27%. This indicates that the first order contextual observation features are very 

important for SVM classification. After combining observation features from one further 

left and one further right neighbors, the corresponding token-level and chunk-level 

accuracies increase to 98.65% and 95.59%. This indicates that the second order 

contextual observation features are still helpful, but less so than the first order ones. 

For the structural SVM method, when the first order contextual observation features are 

added, the overall accuracies at token-level and chunk-level increase to 98.91% and 

96.81%, respectively. The accuracy improvement is not so substantial as that compared 

to the SVM method, which may imply that the contextual observation features and 

contextual label features share redundant discriminative information. After including the 



second order contextual observation features, there is virtually no performance gain for 

the structural SVM method, even though it uses extra contextual label features. 

Comparison with Conditional Random Field (CRF) 

We also compared our methods to CRF, another state-of-the-art sequence learning 

algorithm [24]. Because only binary features can be used in CRF models, we removed 

the normalized position feature from the feature vector used in previous evaluation. We 

then repeated some experiments using the same set of binary features in SVM, structural 

SVM and CRF methods for fair comparisons. We use SimpleTagger, a sequence tagging 

tool for CRF implementation in MALLET [25] for our CRF experiments. 

We conducted the experiments by extracting 14 binary features plus the second order 

contextual features, for a total of 70 features from each token. The accuracies obtained at 

token-level and chunk-level by SVM, structural SVM and CRF are shown in Tables 7 

and 8.  Compared to the numbers in Tables 4, 5 and 6, the accuracies for both SVM and 

structural SVM drop a little due to the absence of the normalized position feature. 

Structural SVM achieved 98.99% token classification accuracy, higher than those of 

SVM (97.84%) and CRF (98.91%). However, CRF obtained 96.93% overall chunk-level 

accuracy, higher than that of structural SVM. Since both structural SVM and CRF are 

sequence learning methods, we do observe that they achieve overall higher token- and 

chunk-level accuracies than SVM in reference parsing. 

The accuracies in CRF experiments are a little different from those reported in [16]. 

That is because in [16], additional large number of word features is extracted from each 

token and used in the classification. Adding those word features significantly increases 

the feature dimensionality, which causes difficulties in training SVM and structural 

SVM. On the other hand, adding those thousands of word features in CRF improves 



accuracy only slightly, indicating the non-importance of word features. Basically, we 

use the first 14 binary features described in Table 2 for a fair comparison. 

Conclusions  
We have compared SVM and structural SVM as methods for parsing references that 

appear in medical journal articles. One important difference between the two methods is 

that the SVM uses only the contextual observation features, while structural SVM uses 

these as well as contextual label features. Although SVM performance improves greatly 

and is close to that of structural SVM when the second order contextual observation 

features are used, structural SVM achieves higher overall token-level and chunk-level 

accuracies than the SVM method. Both methods achieve above 98% token classification 

accuracy and an overall chunk-level accuracy of over 95%. Compared to the CRF, we 

find that the structural SVM achieves similar performance. However, both methods 

perform better than SVM, showing the advantage of their stronger sequence learning 

ability. 

Reference parsing is considered a sequence learning problem due to the strong regular 

internal structure in each reference. Additionally, we note that references cited in any 

one article generally follow the same style. Further exploiting this consistency in 

consecutive references to improve the performance of reference parsing will be the 

subject of future work. 

Competing interests  
The authors declare that they have no competing interests. 

Authors' contributions 
XZ implemented the algorithms, drafted the manuscript and is the corresponding author. 

JZ participated in drafting the manuscript and provided the previous work for reference 



parsing. DXL and GRT supervised the research and revised the manuscript. All authors 

read and approved the final manuscript. 

Acknowledgements  
This research was supported by the Intramural Research Program of the National 

Institutes of Health (NIH), National Library of Medicine, and Lister Hill National Center 

for Biomedical Communications. 

References 
1. Lawrence S, Giles CL and Bollacker K: Digital libraries and autonomous citation 

indexing. IEEE Computer 1999, vol. 32, 6: 67-71  

2. ISI Web of Knowledge [http://www.isiwebofknowledge.com/] 

3. Google Scholar [http://scholar.google.com/] 

4. Lee D, Kang J, Mitra P, Giles CL and On BW: Are your citations clean? 

Communications of the ACM  2007, 50(12): 33-38 

5. Kim I, Le DX, Thoma GR: Identification of "comment-on sentences" in online 

biomedical documents using support vector machines. Proc. SPIE conference on 

Document Recognition and Retrieval 2007, 68150X(1-9) 

6. Aronson AR, Bodenreider O, Chang HF, Humphrey SM, Mork JG, Nelson SJ, 

Rindflesch TC, Wilbur WJ: The NLM indexing initiative. Proc AMIA Symp 2000, 17-

21  

7. Chowdhury G: Template mining for information extraction from digital documents. 

Library Trends 1999, 48(1): 182-208 

8. Ding Y, Chowdhury G and Foo S: Template mining for the extraction of citation 

from digital documents. Proc. the 2
nd

 Asian Digital Library Conference 1999, 47-62 



9. Day MY, Tsai TH, Sung CL, Lee CW, Wu SH, Ong CS, Hsu WL: A knowledge-

based approach to citation extraction. IEEE Int’l Conf. Information Reuse and 

Integration 2005, 50-55 

10. Day MY, Tsai TH, Sung CL, Hsieh CC, Lee CW, Wu SH, Wu KP, Ong CS, Hsu 

WL: Reference metadata extraction using a hierarchical knowledge representation 

framework. Decision Support Systems 2007, 43(1): 152-167 

11. Huang IA, Ho JM, Kao HY, Lin WC: Extracting citation metadata from online 

publication lists using BLAST. Proc. of the Eighth Pacific-Asia Conference on 

Knowledge Discovery and Data Mining 2004, 26-28 

12. Parmentier F and Belaïd A: Logical structure recognition of scientific bibliographic 

references. Proc. ICDAR 1997, 2: 1072-1076 

13. Besagni D, Belaïd A and Benet N: A segmentation method for bibliographic 

references by contextual tagging of fields. Proc. ICDAR 2003, 1: 384-388 

14. Takasu A: Bibliographic attribute extraction from erroneous references based on a 

statistical model. Proc. JCDL 2003, 49-60 

15. Okada T, Takasu A and Adachi J: Bibliographic component extraction using support 

vector machines and Hidden Markov Models. Proc. ECDL 2004, 501-512  

16. Zou J, Le DX, Thoma GR: Locating and parsing bibliographical references in 

the HTML medical journal articles. International Journal on Document Analysis and 

Recognition 2010, 13(2): 107-119  

17. Cortez E,  da Silva AS, Goncalves MA, Mesquita F and de Moura ES: A flexible 

approach for extracting metadata from bibliographic citations. Journal of the 

American Society for Information Science and Technology 2009, 60(6): 1144-1158 



18. Councill IG, Giles CL, Kan KY: ParsCit: an open-source CRF reference string 

parsing package. Proc. of the Language Resources and Evaluation Conference (LREC 

08) 2008. [http://wing.comp.nus.edu.sg/parsCit/] 

19. FreeCite [http://freecite.library.brown.edu/welcome] 

20. Tsochantaridis I, Hofmann T, Joachims T, Altun Y: Support vector machine 

learning for interdependent and structured output spaces. Int’l Conf. on Machine 

Learning (ICML) 2004, 104-112 

21. Joachims T, Finley T, Yu CN: Cutting-plane training of structural SVMs. 

Machine Learning Journal 2009, 77(1): 27-59 

22. Herbst E and Joachims T: SVMHMM: sequence tagging with structural support 

vector machine. [http://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html]  

23. Chang CC and Lin CJ: LIBSVM: a library for support vector machines. 2001. 

Software available at [http://www.csie.ntu.edu.tw/~cjlin/libsvm] 

24. Lafferty J, McCallum A, and Pereira F: Conditional random fields: probabilistic 

models for segmenting and labeling sequence data. Proc. of ICML 2010, 282-289 

25. McCallum AK: MALLET: a machine learning for language toolkit.  

[http://mallet.cs.umass.edu/index.php] 

http://wing.comp.nus.edu.sg/parsCit/
http://freecite.library.brown.edu/welcome
http://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://mallet.cs.umass.edu/index.php


Tables 

Table 1 - Examples of references following different styles in medical journal  

                article 

 (a) 19 S. Miyazaki, K. Takahashi, M. Shiraki, T. Saito, Y. Tezuka and K. Kasuya, Properties of a poly(3-

hydroxybbutyrate) depolymerase from Penicillium funiculosum, J. Polym. Environ. 8 (2002), pp. 175–182. 

<N>19</N> <A>S. Miyazaki, K. Takahashi, M. Shiraki, T. Saito, Y. Tezuka, K. Kasuya,</A> <T>Properties of a 

poly(3-hydroxybbutyrate) depolymerase from Penicillium funiculosum,</T> <J>J. Polym. Environ.</J> <V>8</V> 

<Y>(2002),</Y> <P>pp. 175–182.</P> 

(b) Sofuoglu and Kosten, 2005 M. Sofuoglu and T.R. Kosten, Novel approaches to the treatment of cocaine addiction, 

CNS Drugs 19 (2005), pp. 13–25. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus 

<N>Sofuoglu and Kosten, 2005</N> <A>M. Sofuoglu and T.R. Kosten,</A> <T>Novel approaches to the treatment 

of cocaine addiction,</T> <J>CNS Drugs</J> <V>19</V> <Y>(2005),</Y> <P>pp. 13–25.</P> <O>Full Text via 

CrossRef | Abstract + References in Scopus | Cited By in Scopus</O> 

(c) Czarnetzki, A. B., and C. C. Tebbe. 2004. Diversity of bacteria associated with Collembola: a cultivation-

independent survey based on PCR-amplified 16S rRNA genes. FEMS Microbiol. Ecol. 49:217-227.[CrossRef] 

<A>Czarnetzki, A. B., and C. C. Tebbe.</A> <Y>2004.</Y> <T>Diversity of bacteria associated with Collembola: a 

cultivation-independent survey based on PCR-amplified 16S rRNA genes.</T> <J>FEMS Microbiol. Ecol.</J> 

<V>49:</V> <P>217-227.</P> <O>[CrossRef]</O>  

 (d) Rios R, Carneiro I, Arce VM, and Devesa J. Myostatin is an inhibitor of myogenic differentiation. Am J Physiol 

Cell Physiol 282: C993–C999, 2002. [Abstract/Free Full Text] 

<A>Rios R, Carneiro I, Arce VM, and Devesa J.</A> <T>Myostatin is an inhibitor of myogenic differentiation.</T> 

<J>Am J Physiol Cell Physiol</J> <V>282:</V> <P>C993–C999,</P> <Y>2002.</Y> <O>[Abstract/Free Full 

Text]</O> 

 (e) 12. T.J. McCarthy et al., Chem. Biol. 12, 1221 (2005). [CrossRef] [ISI] [Medline] 

<N>12.</N> <A>T.J. McCarthy et al.,</A> <J>Chem. Biol.</J> <V>12,</V> <P>1221</P> <Y>(2005).</Y> 

<O>[CrossRef] [ISI] [Medline]</O>  

(f) 18 J. Cavanagh, W.J. Fairbrother, A.G. Palmer and N.J. Skelton, Protein NMR Spectroscopy, Academic Press, San 

Diego, CA (1996). 

<N>18</N> <A>J. Cavanagh, W.J. Fairbrother, A.G. Palmer and N.J. Skelton,</A> <J>Protein NMR 

Spectroscopy,</J> <O>Academic Press, San Diego, CA</O> <Y>(1996)</Y> 

(g) Anonymous. 2005. Microbiology of food and animal feeding stuffs. Polymerase chain reaction (PCR) for the 

detection of food-borne pathogens. Requirements for amplification and detection for qualitative methods. Draft 

International Standard ISO/FDIS 20838:2005. DIN, Berlin, Germany. 

<A>Anonymous.</A> <Y>2005.</Y> <T>Microbiology of food animal feeding stuffs. Polymerase chain reaction 

(PCR) for the detection of food-borne pathogens. Requirements for amplification detection for qualitative 

methods.</T> <O>Draft International  Standard ISO/FDIS 20838</O> <Y>2005.</Y> <O>DIN, Berlin, 

Germany.</O> 

 



Table 2 - Features extracted from each token in a reference 

      1.Author Name Feature Is the word in Author Name dictionary? 

      2. Article Title Feature Is the word in Article Title dictionary? 

      3. Journal Title Feature Is the word in Journal Title dictionary? 

      4. Pagination Pattern Is the word in pagination formation, e.g., 200-5, H100-H105? 

      5. Name Initial Pattern Is the word in name initial pattern, e.g., J.Z., J.-Z.? 

      6. Four Digit Year Pattern Is the word in four digit year pattern, e.g., 2005? It must be not 

before 1500, and not later than the current year. 

      7. et, al Is the word “et” or “al”, or “et.”, or “al.”? 

      8. pp., p. Is the word “pp.”, or “p.”, or “pp”, or “p”? 

      9. Ended With “.” Does the word end with “.”? 

      10. Upper Case First Char Is the first character of the word upper case? 

      11. Letter Only Does the word contain letters only? 

      12. Digit Only Does the word contain digits only? 

      13. Digit and Letter Does the word contain both digits and letters? 

      14. Digit and Letter Only Does the word contain digits and letters only? 

      15. Normalized position The position of the word normalized by the total number of words in 

the reference. 

 

Table 3 - The total number of words and chunks for each of the 8 entities in 

references for evaluation 

 Citation 

Number 

Author Title Journal Volume Year Pagination Other Overall 

Total number of words 742 18273 16346 4608 1739 1791 2106 8017 53622 

Total number of chunks 627 1800 1308 1758 1735 1791 1751 1708 12478 

 

Table 4 - Token classification accuracy obtained by SVM and structural SVM 

                          SVM Structural SVM 

Features from token itself (15 features) 93.03% 98.41% 

Features from the token and its two neighbors (45) 98.20% 98.91% 

Features from the token and its four neighbors (75) 98.65% 99.02% 



 Table 5 - Chunk-level accuracies of SVM method 

 Citation 

Number 

Author Title Journal Volume Year Pagination Other Overall 

Features from token itself 93.47% 74.28% 41.90% 51.82% 94.52% 99.50% 93.95% 83.37% 79.12% 

Features from the token 

and its two neighbors 

98.73% 92.78% 81.04% 89.48% 99.25% 99.83% 98.63% 93.91% 94.27% 

Features from the token 

and its four neighbors 

98.73% 95.11% 84.33% 92.61% 99.31% 99.83% 98.91% 94.91% 95.59% 

 

Table 6 - Chunk-level accuracies of structural SVM method 

 Citation 

Number 

Author Title Journal Volume Year Pagination Other Overall 

Features from token itself 99.04% 98.94% 78.59% 91.24% 98.90% 99.50% 98.63% 95.90% 95.35% 

Features from the token 

and its two neighbors 

99.04% 96.39% 90.60% 94.31% 99.14% 99.94% 98.74% 96.08% 96.81% 

Features from the token 

and its four neighbors 

99.20% 97.17% 90.29% 94.94% 99.14% 99.83% 98.63% 95.84% 96.95% 

 

Table 7-Token classification accuracy obtained by SVM, structural SVM and CRF  

 SVM Structural SVM CRF 

Features from the token and its four neighbors (70 features) 97.84% 98.99% 98.91% 

 

Table 8 - Chunk-level accuracies of SVM, structural SVM and CRF  

 Citation Number Author Title Journal Volume Year Pagination Other Overall 

SVM 99.04% 93.06% 78.44% 92.38% 98.85% 99.78% 98.74% 93.03% 94.29% 

Structural SVM 98.89% 96.39% 90.21% 94.99% 99.25% 99.83% 98.80% 95.78% 96.82% 

CRF 98.57% 97.83% 90.75% 94.99% 98.96% 99.22% 98.91% 95.61% 96.93% 

 


